An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters
نویسندگان
چکیده
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
منابع مشابه
Techno-economic operation optimization of a HRSG in combined cycle power plants based on evolutionary algorithms: A case study of Yazd, Iran
In this research study, energy, exergy and economic analyses is performed for a combined cycle power plant (CCPP) with a supplementary firing system. The purpose of this analyses is to evaluate the economic feasibility of a CCPP by applying an optimization techniques based on Evolutionary algorithms. Actually, the evolutionary algorithms of Firefly, PSO and NSGA-II are applied to minimize the c...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملSensitivity Analysis and Development of a Set of Rules to Operate FCC Process by Application of a Hybrid Model of ANFIS and Firefly Algorithm
Fluid catalytic cracking (FCC) process is a vital refinery process which majorly produces gasoline. In this research, a hybrid algorithm which was constituted of Adaptive Neuro-Fuzzy Inference System (ANFIS) and firefly optimization algorithm was developed to model the process and optimize the operating conditions. To conduct the research, industrial data of Abadan refinery FCC process were car...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملDesign of a Constrained Nonlinear Controller using Firefly Algorithm for Active Suspension System
Active vehicle suspension system is designed to increase the ride comfort and road holding of vehicles. Due to limitations in the external force produced by actuator, the design problem encounters the constraint on the control input. In this paper, a novel nonlinear controller with the input constraint is designed for the active suspension system. In the proposed method, at first, a constrained...
متن کامل